Math Department

Canterbury's mathematics faculty believe that math students must progress beyond rote memorization to become adept at mathematical reasoning, allowing them to work through problems they encounter in the ‘real world.’ To achieve this goal, classes engage in cooperative learning, problem-based learning, and simulations. All classes integrate appropriate SAT and ACT prep into the curriculum.

Math courses are listed below; please download the Academic Guide for a complete list of our course offerings.



Basic concepts and properties of elementary algebra are introduced early to prepare students for equation solving. Concepts and skills are introduced algebraically, graphically, numerically, and verbally, often in the same lesson to help students make connections. Frequent and varied skill practice ensures student proficiency and success. Special attention is given to signed numbers, positive and negative exponents, linear equations, factoring, radicals, simultaneous equations, verbal problems, and test-taking strategies.


This full year course regards the properties of right triangles, similar triangles, polygons, and circles. Their geometric properties are treated synthetically with logic and proof, as well as analytically with coordinates and algebra. Multiple formats are supported through mastery including two column and indirect proofs. Students learn to value the need to think logically and present ideas in a clear order. Traditional geometry concepts and deductive reasoning are emphasized throughout, while measurement and applications are integrated to motivate students via real-world connections. Algebra 1 skills are reviewed at point-of-use, ensuring students maintain these skills.  Honors section available.


The goal of this course is to extend the topics and skills of Algebra 1 and Geometry at an appropriate pace. Students will concentrate their efforts on linear, quadratic, exponential and logarithmic functions. Fundamentals of Algebra 2 is a calculator intensive course. Successful completion of this course will prepare students to transition to Elementary Functions.


The goal of the intermediate algebra course is to introduce and automate the middle-level algebra skills. Practice in the fundamental topics (linear equations, exponents, logarithms, graphs, verbal problems, systems of linear and nonlinear equations, complex numbers, right triangle trigonometry, quadratic equations, and linear and quadratic functions) is provided. Honors section available.


Topics covered in this course include a review of linear functions with related applications, a thorough study of matrices, matrix algebra and applications, and an introduction to the mathematics of finance. This course offers the opportunity to investigate mathematics beyond Algebra 2 and to study topics outside the traditional high school curriculum. This course is calculator intensive and includes an introduction to discrete mathematics.


This course provides an elementary introduction to probability theory and mathematical statistics that emphasize the probabilistic foundations required to understand probability models and statistical methods. Topics include: basic combinatorics, discrete and continuous random variables, probability distributions, mathematical expectation, hypothesis testing, confidence intervals, and linear regression.


Pre-Calculus prepares students for a college-level Calculus course by extending the student’s knowledge and skills acquired in previous courses. The course begins with a thorough review of selected topics—linear systems, polynomial functions, exponents, logarithms, sequences, series—and continues with an extensive study of trigonometry both as the solution to triangles and as the study of circular functions. At a more rapid pace, the honors section includes the usual topics treated at the beginning of a Calculus course (limits, derivatives, applications of derivatives). Honors section available.


This course covers many of the topics included in a college-level Calculus course. Topics include limits, methods of differentiation, related rates, maximization, Riemann sums, methods of integration, and area. The course is not as rigorous as AP Calculus and will not cover all of the topics on the AP syllabus.


This course closely examines the theory behind and the applications of the derivative. A strong background knowledge of elementary functions and analytic geometry is required. The second half of this course closely examines integral calculus. The course curriculum satisfies the AB syllabus of the AP program. The course prepares students to take the AP Calculus exam in May.


This course covers the AP syllabus with specific emphasis in data exploration, experimental design, probability, and statistical inference. AP Statistics is a non-calculus based course which introduces students to methods and tools for collecting, analyzing, and drawing conclusions from data. This course is graphing calculator intensive. The course prepares students to take the AP Statistics exam in May.